Skip to content

The Acquisition Engine#

Shoulders of giants...

The patterns in the acquisition engine are heavily inspired by the previous micro-manager engines. The first engine was written in clojure by Arthur Edelstein, Nenad Amodaj, and Nico Stuurman. The second engine (AcqEngJ) was written in Java by Henry Pinkard. Thanks to all of them for their fantastic work!

One of the key features of pymmcore-plus is the acquisition engine. This allows you to define and execute a sequence of events. The sequence may be a typical multi-dimensional acquisition (MDA), such as a z-stack across multiple channels, stage positions, and time points; or it can be any custom sequence of events that you define. It needn't even be a sequence of known length: you can define an iterable or a queue.Queue of events that reacts to the results of previous events, for event-driven "smart" microscopy.

The built-in acquisition engine will support many standard use-cases, but you can also subclass and customize it, allowing arbitrary python code to be executed at each step of the acquisition. This makes it possible to incorporate custom hardware control (e.g. to control devices for which micro-manager has no adapters), data analysis, or other logic into the experiment.

Running a very simple sequence#

To execute a sequence, you must:

  1. Create a CMMCorePlus instance (and probably load a configuration file)
  2. Pass an iterable of useq.MDAEvent objects to the run_mda() method.
from pymmcore_plus import CMMCorePlus
from useq import MDAEvent

# Create the core instance.
mmc = CMMCorePlus.instance()  # (1)!
mmc.loadSystemConfiguration()  # (2)!

# Create a super-simple sequence, with one event
mda_sequence = [MDAEvent()] # (3)!

# Run it!
mmc.run_mda(mda_sequence)
  1. Here, we use the global CMMCorePlus.instance singleton.
  2. This loads the demo configuration by default. Pass in your own config file. See CMMCorePlus.loadSystemConfiguration
  3. An experiment is just an iterable of useq.MDAEvent objects.

Tip

CMMCorePlus.run_mda is a convenience method that runs the experiment in a separate thread. If you want to run it in the main thread, use CMMCorePlus.mda.run directly.

mmc.mda.run(seq)

The code above will execute a single, very boring event! It will snap one image (the default action of an MDAEvent) with the current exposure time, channel, stage position, etc... and then stop.

Let's make it a little more interesting.

The MDAEvent object#

The useq.MDAEvent object is the basic building block of an experiment. It is a relatively simple dataclass that defines a single action to be performed. For complete details, see the useq-schema documentation, but some key attributes you might want to set are:

  • exposure (float): The exposure time (in milliseconds) to use for this event.
  • channel (str | dict[str, str]): The configuration group to use. If a dict, it should have two keys: group and config (the configuration group and preset, respectively). If a str, it is assumed to be the name of a preset in the Channel group.
  • x_pos, y_pos, z_pos (float): An x, y, and z stage position to use for this event.
  • min_start_time (float): The minimum time to wait before starting this event.(in seconds, relative to the start of the experiment)

Example

snap_a_dapi = MDAEvent(channel="DAPI", exposure=100, x_pos=1100, y_pos=1240)

NOTE: The name "DAPI" here must be a name of a preset in your micro-manager "Channel" configuration group.

For any missing keys, the implied meaning is "use the current setting". For example, an MDAEvent without an x_pos or a y_pos will use the current stage position.

The implied "action" of an MDAEvent is to snap an image. But there are ways to customize that, described later.

A multi-event sequence#

With our understanding of MDAEvent objects, we can now create a slightly more interesting experiment. This one will snap four images: two channels at two different stage positions.

from pymmcore_plus import CMMCorePlus
from useq import MDAEvent

# Create the core instance.
mmc = CMMCorePlus.instance()
mmc.loadSystemConfiguration()

# Snap two channels at two positions
mda_sequence = [
    MDAEvent(channel={'config': "DAPI"}, x_pos=1100, y_pos=1240),
    MDAEvent(channel={'config': "FITC"}, x_pos=1100, y_pos=1240),
    MDAEvent(channel={'config': "DAPI"}, x_pos=1442, y_pos=1099),
    MDAEvent(channel={'config': "FITC"}, x_pos=1442, y_pos=1099),
]

# Run it!
mmc.run_mda(mda_sequence)

Logs

If you run the code above, you will see some logs printed to the console that look something like this:

2023-08-12 16:37:50,694 - INFO - MDA Started: GeneratorMDASequence()
2023-08-12 16:37:50,695 - INFO - channel=Channel(config='DAPI') x_pos=1100.0 y_pos=1240.0
2023-08-12 16:37:50,881 - INFO - channel=Channel(config='FITC') x_pos=1100.0 y_pos=1240.0
2023-08-12 16:37:50,891 - INFO - channel=Channel(config='DAPI') x_pos=1442.0 y_pos=1099.0
2023-08-12 16:37:50,947 - INFO - channel=Channel(config='FITC') x_pos=1442.0 y_pos=1099.0
2023-08-12 16:37:50,958 - INFO - MDA Finished: GeneratorMDASequence()

See logging for more details on how to configure and review logs.

At this point, you might be thinking that constructing a sequence by hand is a little tedious. And you'd be right! That's why we have the MDASequence class.

Building sequences with MDASequence#

For most standard multi-dimensional experiments, you will want to use useq.MDASequence to construct your sequence of events. It allows you to declare a "plan" for each axis in your experiment (channels, time, z, etc...) along with the order in which the axes should be iterated.

See the useq-schema documentation for complete details, but let's look at how MDASequence can be used to create a few common experiments.

A two-channel time series#

from useq import MDASequence

mda_sequence = MDASequence(
    time_plan={"interval": 2, "loops": 6}, # (1)!
    channels=[
        {"config": "DAPI", "exposure": 50},
        {"config": "FITC", "exposure": 80},
    ]
)
  1. 10 loops, with a 2 second interval between each loop. See also, additional time-plans.
output of list(mda_sequence)
[
    MDAEvent(index={'t': 0, 'c': 0}, channel=Channel(config='DAPI'), exposure=50.0, min_start_time=0.0),
    MDAEvent(index={'t': 0, 'c': 1}, channel=Channel(config='FITC'), exposure=80.0, min_start_time=0.0),
    MDAEvent(index={'t': 1, 'c': 0}, channel=Channel(config='DAPI'), exposure=50.0, min_start_time=2.0),
    MDAEvent(index={'t': 1, 'c': 1}, channel=Channel(config='FITC'), exposure=80.0, min_start_time=2.0),
    MDAEvent(index={'t': 2, 'c': 0}, channel=Channel(config='DAPI'), exposure=50.0, min_start_time=4.0),
    MDAEvent(index={'t': 2, 'c': 1}, channel=Channel(config='FITC'), exposure=80.0, min_start_time=4.0),
    MDAEvent(index={'t': 3, 'c': 0}, channel=Channel(config='DAPI'), exposure=50.0, min_start_time=6.0),
    MDAEvent(index={'t': 3, 'c': 1}, channel=Channel(config='FITC'), exposure=80.0, min_start_time=6.0),
    MDAEvent(index={'t': 4, 'c': 0}, channel=Channel(config='DAPI'), exposure=50.0, min_start_time=8.0),
    MDAEvent(index={'t': 4, 'c': 1}, channel=Channel(config='FITC'), exposure=80.0, min_start_time=8.0),
    MDAEvent(index={'t': 5, 'c': 0}, channel=Channel(config='DAPI'), exposure=50.0, min_start_time=10.0),
    MDAEvent(index={'t': 5, 'c': 1}, channel=Channel(config='FITC'), exposure=80.0, min_start_time=10.0),
]

A Z-stack at three positions#

from useq import MDASequence, Position

mda_sequence = MDASequence(
    z_plan={"range": 4, "step": 0.5},  # (1)!
    stage_positions=[  # (2)!
        (10, 10, 20),
        {'x': 30, 'y': 40, 'z': 50},
        Position(x=60, y=70, z=80),
    ]
)
  1. A 4-micron Z-stack with 0.5 micron steps, ranging around each position. See also, additional z-plans.
  2. These are all valid ways to specify a stage position. None of x, y, or z are required.
output of list(mda_sequence)
[
    MDAEvent(index={'p': 0, 'z': 0}, x_pos=10.0, y_pos=10.0, z_pos=18.0),
    MDAEvent(index={'p': 0, 'z': 1}, x_pos=10.0, y_pos=10.0, z_pos=18.5),
    MDAEvent(index={'p': 0, 'z': 2}, x_pos=10.0, y_pos=10.0, z_pos=19.0),
    MDAEvent(index={'p': 0, 'z': 3}, x_pos=10.0, y_pos=10.0, z_pos=19.5),
    MDAEvent(index={'p': 0, 'z': 4}, x_pos=10.0, y_pos=10.0, z_pos=20.0),
    MDAEvent(index={'p': 0, 'z': 5}, x_pos=10.0, y_pos=10.0, z_pos=20.5),
    MDAEvent(index={'p': 0, 'z': 6}, x_pos=10.0, y_pos=10.0, z_pos=21.0),
    MDAEvent(index={'p': 0, 'z': 7}, x_pos=10.0, y_pos=10.0, z_pos=21.5),
    MDAEvent(index={'p': 0, 'z': 8}, x_pos=10.0, y_pos=10.0, z_pos=22.0),
    MDAEvent(index={'p': 1, 'z': 0}, x_pos=30.0, y_pos=40.0, z_pos=48.0),
    MDAEvent(index={'p': 1, 'z': 1}, x_pos=30.0, y_pos=40.0, z_pos=48.5),
    MDAEvent(index={'p': 1, 'z': 2}, x_pos=30.0, y_pos=40.0, z_pos=49.0),
    MDAEvent(index={'p': 1, 'z': 3}, x_pos=30.0, y_pos=40.0, z_pos=49.5),
    MDAEvent(index={'p': 1, 'z': 4}, x_pos=30.0, y_pos=40.0, z_pos=50.0),
    MDAEvent(index={'p': 1, 'z': 5}, x_pos=30.0, y_pos=40.0, z_pos=50.5),
    MDAEvent(index={'p': 1, 'z': 6}, x_pos=30.0, y_pos=40.0, z_pos=51.0),
    MDAEvent(index={'p': 1, 'z': 7}, x_pos=30.0, y_pos=40.0, z_pos=51.5),
    MDAEvent(index={'p': 1, 'z': 8}, x_pos=30.0, y_pos=40.0, z_pos=52.0),
    MDAEvent(index={'p': 2, 'z': 0}, x_pos=60.0, y_pos=70.0, z_pos=78.0),
    MDAEvent(index={'p': 2, 'z': 1}, x_pos=60.0, y_pos=70.0, z_pos=78.5),
    MDAEvent(index={'p': 2, 'z': 2}, x_pos=60.0, y_pos=70.0, z_pos=79.0),
    MDAEvent(index={'p': 2, 'z': 3}, x_pos=60.0, y_pos=70.0, z_pos=79.5),
    MDAEvent(index={'p': 2, 'z': 4}, x_pos=60.0, y_pos=70.0, z_pos=80.0),
    MDAEvent(index={'p': 2, 'z': 5}, x_pos=60.0, y_pos=70.0, z_pos=80.5),
    MDAEvent(index={'p': 2, 'z': 6}, x_pos=60.0, y_pos=70.0, z_pos=81.0),
    MDAEvent(index={'p': 2, 'z': 7}, x_pos=60.0, y_pos=70.0, z_pos=81.5),
    MDAEvent(index={'p': 2, 'z': 8}, x_pos=60.0, y_pos=70.0, z_pos=82.0)
]

A grid of Z-stacks#

Here we use axis_order to declare that we want the full Z-stack to happen at each (row, col) before moving to the next position in the grid.

from useq import MDASequence

mda_sequence = MDASequence(
    stage_positions=[{'x': 100, 'y': 200, 'z': 300}],
    grid_plan={"fov_width": 20, "fov_height": 10, "rows": 2, "columns": 2},
    z_plan={"range": 10, "step": 2.5},
    axis_order="pgz"  # (1)!
)
  1. The "fastest" axes come last. By putting z after g in the axis_order, we're saying "at each g, do a full z iteration".
output of list(mda_sequence)
[
    MDAEvent(index={'p': 0, 'g': 0, 'z': 0}, x_pos=90.0, y_pos=205.0, z_pos=295.0),
    MDAEvent(index={'p': 0, 'g': 0, 'z': 1}, x_pos=90.0, y_pos=205.0, z_pos=297.5),
    MDAEvent(index={'p': 0, 'g': 0, 'z': 2}, x_pos=90.0, y_pos=205.0, z_pos=300.0),
    MDAEvent(index={'p': 0, 'g': 0, 'z': 3}, x_pos=90.0, y_pos=205.0, z_pos=302.5),
    MDAEvent(index={'p': 0, 'g': 0, 'z': 4}, x_pos=90.0, y_pos=205.0, z_pos=305.0),
    MDAEvent(index={'p': 0, 'g': 1, 'z': 0}, x_pos=110.0, y_pos=205.0, z_pos=295.0),
    MDAEvent(index={'p': 0, 'g': 1, 'z': 1}, x_pos=110.0, y_pos=205.0, z_pos=297.5),
    MDAEvent(index={'p': 0, 'g': 1, 'z': 2}, x_pos=110.0, y_pos=205.0, z_pos=300.0),
    MDAEvent(index={'p': 0, 'g': 1, 'z': 3}, x_pos=110.0, y_pos=205.0, z_pos=302.5),
    MDAEvent(index={'p': 0, 'g': 1, 'z': 4}, x_pos=110.0, y_pos=205.0, z_pos=305.0),
    MDAEvent(index={'p': 0, 'g': 2, 'z': 0}, x_pos=110.0, y_pos=195.0, z_pos=295.0),
    MDAEvent(index={'p': 0, 'g': 2, 'z': 1}, x_pos=110.0, y_pos=195.0, z_pos=297.5),
    MDAEvent(index={'p': 0, 'g': 2, 'z': 2}, x_pos=110.0, y_pos=195.0, z_pos=300.0),
    MDAEvent(index={'p': 0, 'g': 2, 'z': 3}, x_pos=110.0, y_pos=195.0, z_pos=302.5),
    MDAEvent(index={'p': 0, 'g': 2, 'z': 4}, x_pos=110.0, y_pos=195.0, z_pos=305.0),
    MDAEvent(index={'p': 0, 'g': 3, 'z': 0}, x_pos=90.0, y_pos=195.0, z_pos=295.0),
    MDAEvent(index={'p': 0, 'g': 3, 'z': 1}, x_pos=90.0, y_pos=195.0, z_pos=297.5),
    MDAEvent(index={'p': 0, 'g': 3, 'z': 2}, x_pos=90.0, y_pos=195.0, z_pos=300.0),
    MDAEvent(index={'p': 0, 'g': 3, 'z': 3}, x_pos=90.0, y_pos=195.0, z_pos=302.5),
    MDAEvent(index={'p': 0, 'g': 3, 'z': 4}, x_pos=90.0, y_pos=195.0, z_pos=305.0)
]

Skip timepoints or Z-stacks#

The Channel field has a few tricks, such as skipping timepoints or Z-stacks for specific channels. Here we take a fast Z-stack (leaving the shutter open) in the FITC channel only, and a single image in the DIC channel every 3 timepoints:

from useq import MDASequence

mda_sequence = MDASequence(
    z_plan={"range": 10, "step": 2.5},
    time_plan={"interval": 2, "loops": 6},
    channels=[
        "FITC",
        {"config": "DIC", "acquire_every": 3, "do_stack": False},
    ],
    keep_shutter_open_across=['z'],
)
output of list(mda_sequence)
[
    MDAEvent(index={'t': 0, 'c': 0, 'z': 0}, channel='FITC', min_start_time=0.0, z_pos=-5.0, keep_shutter_open=True),
    MDAEvent(index={'t': 0, 'c': 0, 'z': 1}, channel='FITC', min_start_time=0.0, z_pos=-2.5, keep_shutter_open=True),
    MDAEvent(index={'t': 0, 'c': 0, 'z': 2}, channel='FITC', min_start_time=0.0, z_pos=0.0, keep_shutter_open=True),
    MDAEvent(index={'t': 0, 'c': 0, 'z': 3}, channel='FITC', min_start_time=0.0, z_pos=2.5, keep_shutter_open=True),
    MDAEvent(index={'t': 0, 'c': 0, 'z': 4}, channel='FITC', min_start_time=0.0, z_pos=5.0),
    MDAEvent(index={'t': 0, 'c': 1, 'z': 2}, channel='DIC', min_start_time=0.0, z_pos=0.0),
    MDAEvent(index={'t': 1, 'c': 0, 'z': 0}, channel='FITC', min_start_time=2.0, z_pos=-5.0, keep_shutter_open=True),
    MDAEvent(index={'t': 1, 'c': 0, 'z': 1}, channel='FITC', min_start_time=2.0, z_pos=-2.5, keep_shutter_open=True),
    MDAEvent(index={'t': 1, 'c': 0, 'z': 2}, channel='FITC', min_start_time=2.0, z_pos=0.0, keep_shutter_open=True),
    MDAEvent(index={'t': 1, 'c': 0, 'z': 3}, channel='FITC', min_start_time=2.0, z_pos=2.5, keep_shutter_open=True),
    MDAEvent(index={'t': 1, 'c': 0, 'z': 4}, channel='FITC', min_start_time=2.0, z_pos=5.0),
    MDAEvent(index={'t': 2, 'c': 0, 'z': 0}, channel='FITC', min_start_time=4.0, z_pos=-5.0, keep_shutter_open=True),
    MDAEvent(index={'t': 2, 'c': 0, 'z': 1}, channel='FITC', min_start_time=4.0, z_pos=-2.5, keep_shutter_open=True),
    MDAEvent(index={'t': 2, 'c': 0, 'z': 2}, channel='FITC', min_start_time=4.0, z_pos=0.0, keep_shutter_open=True),
    MDAEvent(index={'t': 2, 'c': 0, 'z': 3}, channel='FITC', min_start_time=4.0, z_pos=2.5, keep_shutter_open=True),
    MDAEvent(index={'t': 2, 'c': 0, 'z': 4}, channel='FITC', min_start_time=4.0, z_pos=5.0),
    MDAEvent(index={'t': 3, 'c': 0, 'z': 0}, channel='FITC', min_start_time=6.0, z_pos=-5.0, keep_shutter_open=True),
    MDAEvent(index={'t': 3, 'c': 0, 'z': 1}, channel='FITC', min_start_time=6.0, z_pos=-2.5, keep_shutter_open=True),
    MDAEvent(index={'t': 3, 'c': 0, 'z': 2}, channel='FITC', min_start_time=6.0, z_pos=0.0, keep_shutter_open=True),
    MDAEvent(index={'t': 3, 'c': 0, 'z': 3}, channel='FITC', min_start_time=6.0, z_pos=2.5, keep_shutter_open=True),
    MDAEvent(index={'t': 3, 'c': 0, 'z': 4}, channel='FITC', min_start_time=6.0, z_pos=5.0),
    MDAEvent(index={'t': 3, 'c': 1, 'z': 2}, channel='DIC', min_start_time=6.0, z_pos=0.0),
    MDAEvent(index={'t': 4, 'c': 0, 'z': 0}, channel='FITC', min_start_time=8.0, z_pos=-5.0, keep_shutter_open=True),
    MDAEvent(index={'t': 4, 'c': 0, 'z': 1}, channel='FITC', min_start_time=8.0, z_pos=-2.5, keep_shutter_open=True),
    MDAEvent(index={'t': 4, 'c': 0, 'z': 2}, channel='FITC', min_start_time=8.0, z_pos=0.0, keep_shutter_open=True),
    MDAEvent(index={'t': 4, 'c': 0, 'z': 3}, channel='FITC', min_start_time=8.0, z_pos=2.5, keep_shutter_open=True),
    MDAEvent(index={'t': 4, 'c': 0, 'z': 4}, channel='FITC', min_start_time=8.0, z_pos=5.0),
    MDAEvent(index={'t': 5, 'c': 0, 'z': 0}, channel='FITC', min_start_time=10.0, z_pos=-5.0, keep_shutter_open=True),
    MDAEvent(index={'t': 5, 'c': 0, 'z': 1}, channel='FITC', min_start_time=10.0, z_pos=-2.5, keep_shutter_open=True),
    MDAEvent(index={'t': 5, 'c': 0, 'z': 2}, channel='FITC', min_start_time=10.0, z_pos=0.0, keep_shutter_open=True),
    MDAEvent(index={'t': 5, 'c': 0, 'z': 3}, channel='FITC', min_start_time=10.0, z_pos=2.5, keep_shutter_open=True),
    MDAEvent(index={'t': 5, 'c': 0, 'z': 4}, channel='FITC', min_start_time=10.0, z_pos=5.0)
]

A note on syntax#

If you prefer, you can use useq objects rather than dicts for all of these fields. This has the advantage of providing type-checking and auto-completion in your IDE.

Example

The following two sequences are equivalent:

import useq

mda_sequence1 = useq.MDASequence(
    time_plan={"interval": 2, "loops": 10},
    z_plan={"range": 4, "step": 0.5},
    channels=[
        {"config": "DAPI", "exposure": 50},
        {"config": "FITC", "exposure": 80},
    ]
)

mda_sequence2 = useq.MDASequence(
    time_plan=useq.TIntervalLoops(interval=2, loops=10),
    z_plan=useq.ZRangeAround(range=4, step=0.5),
    channels=[
        useq.Channel(config="DAPI", exposure=50),
        useq.Channel(config="FITC", exposure=80),
    ]
)

assert mda_sequence1 == mda_sequence2

Running an MDA sequence#

You may have noticed above that we could call list() on an instance of MDASequence to get a list of MDAEvent objects. This means that MDASequence is an iterable of MDAEvent... which is exactly what we need to pass to the run_mda() method.

So, you can directly pass an instance of MDASequence to run_mda:

from pymmcore_plus import CMMCorePlus
import useq

mmc = CMMCorePlus.instance()
mmc.loadSystemConfiguration()

# create a sequence
mda_sequence = useq.MDASequence(
    time_plan={"interval": 2, "loops": 10},
    z_plan={"range": 4, "step": 0.5},
    channels=[
        {"config": "DAPI", "exposure": 50},
        {"config": "FITC", "exposure": 20},
    ]
)

# Run it!
mmc.run_mda(mda_sequence)

Handling acquired data#

You will almost certainly want to do something with the data that is collected during an MDA 😂. pymmcore-plus is relatively agnostic about how acquired data is handled. There are currently no built-in methods for saving data to disk in any particular format.

This is partially because there are so many good existing ways to store array data to disk in Python, including:

You will, however, want to know how to connect callbacks to the frameReady event, so that you can handle incoming data as it is acquired:

from pymmcore_plus import CMMCorePlus
import numpy as np
import useq

mmc = CMMCorePlus.instance()
mmc.loadSystemConfiguration()

@mmc.mda.events.frameReady.connect # (1)!
def on_frame(image: np.ndarray, event: useq.MDAEvent):
    # do what you want with the data
    print(
        f"received frame: {image.shape}, {image.dtype} "
        f"@ index {event.index}, z={event.z_pos}"
    )

mda_sequence = useq.MDASequence(
    time_plan={"interval": 0.5, "loops": 10},
    z_plan={"range": 4, "step": 0.5},
)

mmc.run_mda(mda_sequence)
  1. The frameReady signal accepts a callback with up to two arguments: the image data as a numpy array, and the MDAEvent that triggered the callback

See also additional events you may wish to connect to.

Cancelling or Pausing#

You can pause or cancel the mda with the CMMCorePlus.mda.toggle_pause or CMMCorePlus.mda.cancel methods.

mmc.mda.toggle_pause()  # pauses the mda
mmc.mda.toggle_pause()  # resumes the mda

mmc.mda.cancel()  # cancels the mda

Serializing MDA sequences#

MDASequence objects can be serialized and deserialized to and from JSON or YAML, making it easy to save and load them from file:

import useq
from pathlib import Path

mda_sequence = useq.MDASequence(
    time_plan={"interval": 2, "loops": 10},
    z_plan={"range": 4, "step": 0.5},
    channels=[
        {"config": "DAPI", "exposure": 50, "do_stack": False},
        {"config": "FITC", "exposure": 20},
    ],
    axis_order="tcz"
)

Path("mda_sequence.yaml").write_text(mda_sequence.yaml())

... results in:

mda_sequence.yaml
axis_order: tcz
channels:
  - config: DAPI
    do_stack: false
    exposure: 50.0
  - config: FITC
    exposure: 20.0
time_plan:
  interval: 0:00:02
  loops: 10
z_plan:
  range: 4.0
  step: 0.5

... which can be loaded back into a MDASequence object:

mda_sequence = useq.MDASequence.from_file("mda_sequence.yaml")

... or even run directly with the mmcore command line:

# use --config to specify a config file for your microscope
$ mmcore run mda_sequence.yaml

Hardware-triggered sequences#

Having the computer "in-the-loop" for every event in an MDA sequence can add unwanted overhead that limits performance in rapid acquisition sequences. Because of this, some devices support hardware triggering. This means that the computer can tell the device to queue up and start a sequence of events, and the device will take care of executing the sequence without further input from the computer.

Just like micro-manager's acquisition engine, the default acquisition engine in pymmcore-plus can opportunistically use hardware triggering whenever possible. This behavior is on by default, but you can disable it by setting CMMCorePlus.mda.engine.use_hardware_sequencing = False, which may be useful for various debugging or testing purposes:

from pymmcore_plus import CMMCorePlus

mmc = CMMCorePlus.instance()
mmc.loadSystemConfiguration()

# enable hardware triggering
# this is True by default, this is just an example for how to set it
mmc.mda.engine.use_hardware_sequencing = True

How does pymmcore-plus know if my device supports hardware triggering?

The low-level CMMCore object itself has a number of methods that query whether certain devices are capable of hardware triggering, such as

Hint: Many devices that support sequencing have a property (often named Sequence or similar) that can be used to toggle their responses to the above queries, thereby enabling or disabling sequencing.

If two MDAEvents in a sequence have different exposure, stage, or other device property values, then pymmcore-plus uses these methods to determine whether the events can be sequenced (see pymmcore_plus.CMMCorePlus.canSequenceEvents). If they can, then the events are grouped together and executed as a single hardware-triggered sequence.

from pymmcore_plus import CMMCorePlus
import useq

mmc = CMMCorePlus.instance()

mmc.loadSystemConfiguration()
print(mmc.canSequenceEvents(useq.MDAEvent(), useq.MDAEvent()))  # True
print(mmc.canSequenceEvents(
    useq.MDAEvent(exposure=50, x_pos=54),
    useq.MDAEvent(exposure=10, x_pos=40)
))  # False, unless you have stage and exposure hardware triggering

Next steps#

Now that you have a basic understanding of how to create and run multi-dimensional acquisition sequences in pymmcore-plus, you may want to take a look at some more advanced features: